

261

M. Shona and B. N. Arathi, ―A survey on the data management in IoT,‖ International Journal of Scientific and Technical Advancements,

Volume 2, Issue 1, pp. 261-264, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

A Survey on the Data Management in IoT

M. Shona
1
, B. N. Arathi

2

1, 2
Department of CSE, SVCE, Bangalore, India

Email address:
1
sonasuresh04@gmail.com,

2
aradvg@yahoo.com

Abstract—In the recent years, the Internet of Things (IoT) is considered as a part of the Internet of future and makes it possible for

connecting various smart objects together through the Internet. The use of IoT technology in applications has spurred the increase of real-

time data, which makes the information storage and accessing more difficult and challenging. This paper discusses the challenges for Data

Management systems in the Internet of Things to manage the massive volume of operational data gener-ated by sensors and devices.

Keywords—NoSQL; hadoop; time series daemon (TSD); memSQL.

I. INTRODUCTION

network comprised of physical objects capable of

gathering and sharing electronic information. The

Internet of Things includes a wide variety of

―smart‖ devices, from industrial machines that transmit data

about the production process to sensors that track information

about the human body. Often, these devices use Internet

Protocol (IP), the same protocol that identifies computers over

the world wide web and allows them to communicate with one

another.

The connection of physical things to the Internet makes it

possible to access remote sensor data and to control the

physical world from a distance. All of these things are creating

a ―perfect storm‖ for the IoT. It is estimated that by 2020 there

will be over 25 billion devices wirelessly connected to the

Internet of Things, including embedded and wearable

computing devices. At the same time, IoT imposes fewer data

quality and integrity constraints. Although IoT sensors

generate data rapidly, they do not entail the same kinds of

transactions one finds in traditional enterprise business

applications.

Fig. 1. IoT data lifecycle and data management.

The lifecycle of data within an IoT system—illustrated in

figure 1—proceeds from data production to aggregation,

transfer, optional filtering and preprocessing, and finally to

storage and archiving. Querying and analysis are the end

points that initiate (request) and consume data production, but

data production can be set to be ―pushed‖ to the IoT

consuming services [5]. Production, collection, aggregation,

filtering, and some basic querying and preliminary processing

functionalities are considered online, communication-intensive

operations. Intensive preprocessing, long-term storage and

archival and in-depth processing/analysis are considered

offline storage-intensive operations.

Storage operations aim at making data available on the long

term for constant access/updates, while archival is concerned

with read-only data. Since some IoT systems may generate,

process, and store data in-network for real-time and localized

services, with no need to propagate this data further up to

concentration points in the system, ―edges‖ that combine both

processing and storage elements may exist as autonomous

units in the cycle. In the following paragraphs, each of the

elements in the IoT data lifecycle is explained.

Querying: Data-intensive systems rely on querying as the core

process to access and retrieve data. In the context of IoT, a

query can be issued either to request real-time data to be

collected for temporal monitoring purposes or to retrieve a

certain view of the data stored within the system. The first

case is typical when a (mostly localized) real-time request for

data is needed. The second case represents more globalized

views of data and in-depth analysis of trends and patterns.

Production: Data production involves sensing and transfer of

data by the ―Things‖ within the IoT framework and reporting

this data to interested parties periodically (as in a

subscribe/notify model), pushing it up the network to

aggregation points and subsequently to database servers, or

sending it as a response triggered by queries that request the

data from sensors and smart objects. Data is usually time-

stamped and possibly geo-stamped, and can be in the form of

simple key-value pairs, or it may contain rich

audio/image/video content, with varying degrees of

complexity in-between.

Collection: The sensors and smart objects within the IoT may

store the data for a certain time interval or report it to

governing components. Data may be collected at

concentration points or gateways within the network where it

is further filtered and processed, and possibly fused into

compact forms for efficient transmission. Wireless

A

http://whatis.techtarget.com/definition/sensor
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871070/figure/f1-sensors-13-15582/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871070/#b5-sensors-13-15582

262

M. Shona and B. N. Arathi, ―A survey on the data management in IoT,‖ International Journal of Scientific and Technical Advancements,

Volume 2, Issue 1, pp. 261-264, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

communication technologies such as Zigbee, Wi-Fi and

cellular are used by objects to send data to collection points.

Aggregation/Fusion: Transmitting all the raw data out of the

network in real-time is often prohibitively expensive given the

increasing data streaming rates and the limited bandwidth.

Aggregation and fusion techniques deploy summarization and

merging operations in real-time to compress the volume of

data to be stored and transmitted [1].

Delivery: As data is filtered, aggregated, and possibly

processed either at the concentration points or at the

autonomous virtual units within the IoT, the results of these

processes may need to be sent further up the system, either as

final responses, or for storage and in-depth analysis. Wired or

wireless broadband communications may be used there to

transfer data to permanent data stores.

Preprocessing: IoT data will come from different sources with

varying formats and structures. Data may need to be

preprocessed to handle missing data, remove redundancies and

integrate data from different sources into a unified schema

before being committed to storage. This preprocessing is a

known procedure in data mining called data cleaning. Schema

integration does not imply brute-force fitting of all the data

into a fixed relational (tables) schema, but rather a more

abstract definition of a consistent way to access the data

without having to customize access for each source's data

format(s). Probabilities at different levels in the schema may

be added at this phase to IoT data items in order to handle

uncertainty that may be present in data or to deal with the lack

of trust that may exist in data sources [2].

Storage/Update—Archiving: This phase handles the efficient

storage and organization of data as well as the continuous

update of data with new information as it becomes available.

Archiving refers to the offline long-term storage of data that is

not immediately needed for the system's ongoing operations.

The core of centralized storage is the deployment of storage

structures that adapt to the various data types and the

frequency of data capture. Relational database management

systems are a popular choice that involves the organization of

data into a table schema with predefined interrelationships and

metadata for efficient retrieval at later stages [3]. NoSQL key-

value stores are gaining popularity as storage technologies for

their support of big data storage with no reliance on relational

schema or strong consistency requirements typical of

relational database systems [4]. Storage can also be

decentralized for autonomous IoT systems, where data is kept

at the objects that generate it and is not sent up the system.

However, due to the limited capabilities of such objects,

storage capacity remains limited in comparison to the

centralized storage model.

Processing/Analysis: This phase involves the ongoing retrieval

and analysis operations performed and stored and archived

data in order to gain insights into historical data and predict

future trends, or to detect abnormalities in the data that may

trigger further investigation or action. Task-specific

preprocessing may be needed to filter and clean data before

meaningful operations take place. When an IoT subsystem is

autonomous and does not require permanent storage of its

data, but rather keeps the processing and storage in the

network, then in-network processing may be performed in

response to real-time or localized queries.

Looking back at figure 1, the flow of data may take one of

three paths: a path for autonomous systems within the IoT that

proceeds from query to production to in-network processing

and then delivery, a path that starts from production and

proceeds to collection and filtering/aggregation/fusion and

ends with data delivery to initiating (possibly global or near

real-time) queries, and finally a path that extends the

production to aggregation further and includes preprocessing,

permanent data storage and archival, and in-depth processing

and analysis. In the next section, the need for data

management solutions that surpass the current capabilities of

traditional data management is highlighted in light of the

previously outlined life cycle.

II. REQUIREMENTS OF IOT

The requirements of IoT fall into three general categories

are, and virtually all applications will require that at least two

are satisfied by your database platformsimultaneously:

1. Continuous machine-scale ingestion, indexing, and

storage. A modest data source may generate millions of

complex records per second on a continuous basis. You

will need to parse formats like GeoJSON (surprisingly

common) at this data rate. The velocity implies a volume

that is too large to fit in memory but it is simple to store

data on 10 GbE networks at wire speed using commodity

disks.

2. Operational ("real-time") queries and analytics. Extracting

value from IoT data is all about minimizing the latency

from data ingestion to online queries and actionable

analytics. For many applications, the value of the data is

highly perishable, with an exponential decay on

timeframes measured in seconds. IoT queries and analytics

are rarely summarizations. Stream processing rarely

works, you need to support ad hoc queries in something

like SQL.

3. IoT data is all about spatiotemporal relationships and join

operations. To support the speed and scale of the first two

bullets this means you need at least a true time-series

database for very simple uses and a true spatial database

for the more general case. Spatiotemporal (or just

temporal) must be a fundamental organizing principle of

the database internals or it will not scale; you cannot

modify a text-and-numbers database with extensions for

this purpose.

There are, in practice, two types of databases: relational

and non-relational [6] (better known as NoSQL). There are

pros and cons to each.

Relational

The relational model organizes data into multiple tables

and assigns a value to attributes in each row and column, with

a unique key for each row. Other tables can use these keys to

access the data without reorganizing the table.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871070/#b6-sensors-13-15582
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871070/#b7-sensors-13-15582
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871070/#b8-sensors-13-15582
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871070/#b9-sensors-13-15582
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871070/figure/f1-sensors-13-15582/

263

M. Shona and B. N. Arathi, ―A survey on the data management in IoT,‖ International Journal of Scientific and Technical Advancements,

Volume 2, Issue 1, pp. 261-264, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

 The pros: Relational databases are simple, structured and

¬flexible. They’re often used when processing speed is not

a factor. They use Structured Query Language (SQL), a

commonly understood process for manipulating data.

Relational databases are often used in industries such as

banking and financial services; because the data is not

divisible, data integrity is preserved.

 The cons: Relational databases can be slow. If there are

many tables utilizing relationships, the responsiveness of

data queries can be delayed. In addition, relational

databases scale up well, but do not scale out well, making

storage expensive.

NoSQL

NoSQL was developed in response to the shortcoming of

relational databases, and was deigned to be more open source,

more ¬flexible, and horizontally scalable. Unlike relational

databases, NoSQL databases are not set up to have tables with

linked relationships. There are several types of NoSQL

databases, each with slightly different attributes defining how

the information is stored and displayed to the user.

The pros: NoSQL databases are generally more scalable than

relational ones and performance is generally not an issue.

They are designed to expand transparently and horizontally

using low-cost hardware.

The cons: NoSQL databases generally cannot handle the

analytic processing of the data or joins, which are common

requirements for IoT applications. They employ low-level

query languages, and do not accommodate transactions where

data integrity needs to be preserved (such as in the banking

example above).

The reality is, the IoT requires characteristics of both

relational [6] and NoSQL databases; the fl¬exibility of

NoSQL, which allows different types of data to be stored, and

the agility to adapt the underlying data models to specific

business requirements and applications, and the data integrity

aspects of the relational approach.

A database for IoT applications must be scalable. Ideally,

IoT databases are linearly scalable so adding one more server

to a 10 node cluster increases throughput by 10%. IoT

databases will usually be distributed unless the application

collects only a small amount of data that will not grow

substantially. Distributed databases [5] can run on commodity

hardware and scale by adding new servers instead of swapping

out a server for a larger one. Distributed databases are

especially well suited for IaaS clouds since it is relatively easy

to add and remove servers from the database cluster as needed.

An IoT database should also be fault tolerant and highly

available. If a node in the database cluster is down, it should

still be able to accept read and write requests. Distributed

databases make copies, or replicas, of data and write them to

multiple servers. If one of the servers storing a particular data

set fails, then one of the other servers storing a replica of the

data set can respond to the read query. Write requests can be

handled in a couple of ways. If the server that would normally

accept a write request is down, another node in the server can

accept the write request and forward it to the target server

when it is back online.

III. DATABASES IN IOT

A. An approach to ensuring high availability with regards to

writes is to use a distributed messaging system such as

Apache Kafka or Amazon Kinesis, which is based on

Apache Kafka. These systems can accept writes at high

volumes and store them persistently in a publish-and-

subscribe system. If a server is down or the volume of

writes is too high for the distributed database to ingest in

real time, data can be stored in the messaging system until

the database processes the backlog of data or additional

nodes are added to the database cluster.

B. IoT databases should be as flexible as required by the

application. NoSQL [7] databases -- especially key-value,

document and column family databases -- easily

accommodate different data types and structures without

the need for predefined, fixed schemas. NoSQL databases

are good options when an organization has multiple data

types and those data types will likely change over time. In

other cases, applications that collect a fixed set of data --

such as data on weather conditions -- may benefit from a

relational model. In-memory SQL databases, such as

MemSQL, offer this benefit.

C. Managing a database for IoT applications in-house For

those organizations choosing to manage their own

databases, DataStax Cassandra is a highly scalable

distributed database that supports a flexible big table

schema and fast writes and scales to large volumes of data.

Riak IoT is a distributed, highly scalable key-value data

store which integrates with Apache Spark, a big data

analytics platform that enables stream analytic processing.

D. Readying the data center for the IoT era OpenTSDB is an

open source database capable of running on Hadoop and

HBase. The database is made up of command line

interfaces and a Time Series Daemon (TSD). TSDs, which

are responsible for processing all database requests, run

independently of one another. Even though TSDs use

HBase to store time-series data, TSD users have little to no

contact with HBase itself.

MemSQL [8] is a relational database tuned for real-time

data streaming. With MemSQL, streamed data, transactions

and historical data can be kept within the same database. The

database also has the capacity to work well with geospatial

data out of the box, which could be useful for location-based

IoT applications. MemSQL supports integration with Hadoop

Distributed File System and Apache Spark, as well as other

data warehousing solutions.

ACKNOWLEDGMENT

This paper consider the challenges brought by the need to

manage vast quantities of data across heterogeneous systems.

In particular, it consider the factors to keep in mind when

choosing a database for an IoT application.

http://searchcloudcomputing.techtarget.com/definition/Infrastructure-as-a-Service-IaaS
http://searchdisasterrecovery.techtarget.com/definition/fault-tolerant
http://searchdatacenter.techtarget.com/definition/high-availability
http://searchdatacenter.techtarget.com/definition/high-availability
http://whatis.techtarget.com/definition/Apache-Kafka
http://searchaws.techtarget.com/definition/Amazon-Kinesis
http://searchdatamanagement.techtarget.com/definition/NoSQL-Not-Only-SQL
http://www.datastax.com/
http://basho.com/use-cases/sensor-data-iot/
http://searchbusinessanalytics.techtarget.com/definition/Apache-Spark
http://internetofthingsagenda.techtarget.com/ehandbook/Readying-the-data-center-for-the-IoT-era
http://searchdatamanagement.techtarget.com/definition/Apache-HBase
http://searchbusinessanalytics.techtarget.com/definition/Hadoop-Distributed-File-System-HDFS
http://searchbusinessanalytics.techtarget.com/definition/Hadoop-Distributed-File-System-HDFS

264

M. Shona and B. N. Arathi, ―A survey on the data management in IoT,‖ International Journal of Scientific and Technical Advancements,

Volume 2, Issue 1, pp. 261-264, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

REFERENCES

[1] C. Luo, F. Wu, J. Sun, and C. W. Chen, ―Compressive data gathering for

large-scale wireless sensor networks,‖ Proceedings of the 15th Annual
International Conference on Mobile Computing and Networking

(MobiCom 2009, Beijing, China, pp. 145–156, 2009.

[2] L. Chen, M. Tseng, and X. Lian, ―Development of foundation models
for Internet of Things,‖ Front. Comput. Sci. China, vol. 4, pp. 376–385,

2010.

[3] R. Ramakrishnan and J. Gehrke, Database Management Systems, 3rd ed.
McGraw-Hill; New York, NY, USA: 2002.

[4] R. Cattell, ―Scalable SQL and NoSQL data stores,‖ ACM SIGMOD

Record, vol. 39, pp. 12–27, 2010.

[5] M. T. Ozsu and P. Valduriez, Principles of Distributed Database

Systems, 3rd ed. Springer, New York, NY, USA, 2011.
[6] N. Jatana, S. Puri, M. Ahuja, I. Kathuria, and D. Gosain, ―A survey and

comparison of relational and non-relational database,‖ International

Journal of Engineering Research & Technology (IJERT), vol. I, no. 6,
2012.

[7] C. Nance and T. Losser, ―NOSQL VS RDBMS -Why there is room for

both,‖ in Proceedings of the Southern Association for Information
Systems Conference, Savannah, GA,USA, 2013

[8] D. Harris, Ex-Facebookers Launch MemSQL to Make your Database

Fly, 2012.

http://gigaom.com/cloud/ex-facebookers-launch-memsql-to-make-your-database-fly/
http://gigaom.com/cloud/ex-facebookers-launch-memsql-to-make-your-database-fly/

